丝笑容:“看来并没有那么难的样子,或许很快就能搞定这个难题了!”
充满动力的他,再度投入了到了研究中。
日子就这样一天天过去,也不知道过去了多久。
书房中的,徐川一边抬头看电脑屏幕上之前整理出来的数据,一边挥舞着手中的圆珠笔继续在稿纸上写出一些数学公式。
“(τ)/Vi(t)=1/▽i(ξ,η,ζ,t)dξdηdζ,ft +ξ·xf =1κQ(f, f),.,”
盯着书写在稿纸上的数据,他皱着眉头陷入了沉思中。
推论到这一地步,他已经做到了通过数学方程来描述反应堆腔室中的等离子体流动,但新的问题也出现了。
目前来说,他仅仅能做到对于体均值近乎均匀的湍流流场进行的描述,而相对紊乱的不脉动场依旧是一团迷雾。
沉思了一会,徐川将手中的圆珠笔丢到了一旁,身体倒向椅背,默默的盯着天花板看着。
半响后,他长舒了口气无奈的摇了摇头自语道:“看来搞研究前立flag真不是一件什么好事。”
一开始,在深入核心研究的时候过于顺利,让他以为在有了足够的理论支撑基础上很快就能得到结果,这让他自信满满的立下了flag。
可现在看来,他距离这座迷宫的出口,还不知道有多远。
甚至,他现在都开始有些怀疑他走的这条道路可能是有问题的了。
众所周知,在宏观尺度下,气体和流体被看作一个连续体。
它们的运动由诸如物质密度、宏观速度、绝对温度、压强、张力、热流等宏观量来描述。
但与之相反的是,在微观尺度,气体、流体乃至任何物质都被看作一个由微观粒子(原子/分子)组成的多体系统。
而在流体力学所提出的方程组中最著名的当属(可压或不可压)欧拉方程组和Navier-Stokes方程组了。
不过在对流体动力学的研究中,还有另一个大名鼎鼎的方程,那就是玻尔兹曼(Boltzmann)方程。
玻尔兹曼方程是一个描述非热力学平衡状态的热力学系统统计行为的偏微分方程,由路德维希·玻尔兹曼于1872年提出。
它可用于确定物理量是如何变化的,例如流体在输运过程中的热能和动量。
此外,我们还可以由它推导出其他的流体特征性质,例如粘度,导热性,以及导电率(将材
本章未完,请点击下一页继续阅读!